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Recalls – AC Network



Courtesy of PJM

AC Network - Stability



Source CRE

Italy, 28 September 2003USA, 14 August 2003

Losses:    61,800 MW 
Persons:  50 millions 
Duration: up to 2 days

Losses:    20,000 MW 
Persons:  57 millions 
Duration: 2 hours

AC Network – Stability – Working to its limits - Blackout



49 Hz
49.7 Hz

51 Hz

November 4th, 2006

Courtesy of UCTE

Losses:    17,000 MW 
Persons:  10 millions 
Duration: 2 hours

AC Network – Stability – Frequency issue



Courtesy of UCTE

Resynchronization process – Reclosing attempts

AC Network – Stability – Frequency issue
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More Energy consumption = More Production (RES)

The Baseline scenario determines the development of the EU energy system under current trends and policies; it includes 

current trends on population and economic development including the recent economic downturn and takes into account the 

highly volatile energy import price environment of recent years. EU ENERGY TRENDS TO 2030



More Energy consumption = More Production (RES)



Power quality

� Flicker
� Harmonics

Reactive power control

Low voltage ride through

AC Network  - towards more constraints on wind penetration
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Adding more and more constraints on RES integration is it a viable solution for power transmission and 
distribution of the future ?

Lower threshold of the voltage from 0.05 p.u. to 0.01 p.u. Capacity of the electrical system to support 

a loss of PV during several hundreds of ms     à One solution to improve the network stability

AC Network  - towards more constraints on PV penetration



More production (RES) - More players - Smart Grid

Is it sufficient to make the AC grid smarter? 
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A Sample of European Proposals
G. Asplund, B. Jacobson, B. Berggren, K. Lindén
”Continental Overlay HVDC-Grid”, Cigré conference, 
B4-109, Paris, 2010

AC Network  & DC grid - towards more RES penetration

New motorways for energy transmission ���� DC Networks



DC Energy will become a reality:  It will develop 2 ways

TOP – DOWN
The Supergrid : trade high volume of electricity 

across long distances.

Traditional way for Utilities

•Integration of off-shore renewables farms

•Integration of centralized storage

•Increased stability and quality issues

•New interconnections

•Demand-offer management

BOTTOM – UP

The adjacent Smartgrid: Anticipated way for 

mass consumer driven market

•Captive renewables

•Distributed storage

•E-Cars

•Mass transit systems

•“Urban Grid”

� Supergrid can also be referenced as “Mega-Grid” or  “Electrical 
-Highway” or “Super-Highway” or “Hypergrid” or etc …



SuperGrid

Existing HV AC grid

Adjacent smart grid

Local  MV DC grid

Existing MV AC grid

continent

country

region

Cities,  

Industrial site

SuperGrid
�Meshed DC Grid

�Redundant lines

�Converters only at 
interface between  AC and 
DC grids

� Reduced Losses

Adjacent smartgrid
�Local DC loops

�DC/DC converters to 
connect renewable, storage 
& loads in local loops and 
DC/AC converters at 
interface between  AC and 
DC grids

� Reduced Losses

Local  MV DC grid Local  MV DC grid

Superimposed layers

2020 vision: Supergrid & Adjacent Smartgrid



2030 vision: AC & DC Hybrid Power Network

HVDC Grid 2020

MPDC Grid 2020

DC Grid 2030



AC Network  & DC grid - towards more RES penetration

AC network
Active Power ⇒⇒⇒⇒ Network Frequency

Reactive Power  ⇒⇒⇒⇒ Voltage

DC network Active Power ⇒⇒⇒⇒ Voltage

Reduced Margin of stability

Depending on the used 
technologies Increased stability 

Margin – protection issue

DC grid can act as mass storage system (with distributed 
small storage systems)

Do we need mass-storage systems? 
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DC 
transmission

line

VSC-HVDC: Problem formulation

VSC-HVDC Transmission Structure

PPPPQQQQ1111 QQQQ2222

Station 1Station 1Station 1Station 1

Network
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Network
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Control objectives

Station 1
Reactive Power Q1

DC-Bus voltage UC1

Station 2
Reactive Power Q2

Active Power P
Main assumptions

Balanced three-phase network

Rotating reference frame (d,q) synchronized (Using PLL)

Station 1 & 2 are ideal VSC 4-quadrants actuators

VSC-HVDC: Problem formulation
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VSC-HVDC: Continuous-time equivalent model



Continuous-time equivalent model (station1)
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VSC-HVDC: Continuous-time equivalent model



Control objectives

Uc1 has to be maintained at a set point

Regulation problem

[ ]
T

lqld iix 111 =
Fast 

dynamics

12 cux =
Slow 

dynamics

Il1d and Il1q has to follow a varying references

Tracking problem:
Il1dref: Uc1 controller output

Il1qref: Function of Q1ref

The model can be seen as
a connection of two 

subsystems

VSC-HVDC: Control structure (Station 1)

Two scales of time



Control Philosophy
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VSC-HVDC: Control structure (Station 1)



Fast dynamics control loop
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Fast dynamics control loop (current controller)

2. Robust linear controller

Robust linear 
control
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VSC-HVDC: Control synthesis (Station 1)



Slow dynamics control loop (DC-Bus Voltage Controller)
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Control scheme
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VSC-HVDC: Control synthesis (Station 2)



Positive power step: P= 200 MW at t=0.1s (Pnominal =  300 MW)
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VSC-HVDC: Simulation results (cable length 10km)



Positive power step: P= 200 MW at t=0.1s (Unominal =  300 kV)
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VSC-HVDC: Simulation results (cable length 10km)



Negative power step: P=-200 MW at t=0.1s (Pnominal =  300 MW)
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VSC-HVDC: Simulation results (cable length 10km)



Control philosophy of station 1

T

lqldlqld i
dt

d
i

dt

d
i

dt

d
i

dt

d
x

dt

d






=

−−++

11111

12 cu
dt

d
x

dt

d
====

Fast Fast Fast Fast 
ControllerControllerControllerController

Slow Slow Slow Slow 
ControllerControllerControllerController

refQ1

( )tM
1−

−

−

+

+

qrefl

drefl

qrefl

drefl

i

i

i

i

1

1

1

1

refcu 1

1x

2x

wv1

refP1

02sin1 =P02cos1 =P

refP1

VSC-HVDC: Control structure (Station 1)–Unbalanced system
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VSC-HVDC: Simulation results (cable length 10km)
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Station1 
Cable

Station2

Uc1_ref

Q1_ref

Vwqd1
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control
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(Uc1, ic1)

Cable State Controller

Load
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Signals from
Secondary level
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VSC-HVDC: sub-systems interconnection

Multiple time scales ���� Solution for DC grid control



Simulation results: 200MW positive power step
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VSC-HVDC: sub-systems interconnection



Simulation results: 200MW positive power step

0 0.5 1

0

500

1000

1500

2000

Station 1: current idq1

0 0.5 1

0

500

1000

1500

2000

Station 2: current idq2

Without cable controller
With cable controller

Time (s)Time (s)Time (s)Time (s) Time (s)Time (s)Time (s)Time (s)

CurrentCurrentCurrentCurrent (A)(A)(A)(A) CurrentCurrentCurrentCurrent (A)(A)(A)(A)

VSC-HVDC: sub-systems interconnection



Plan

Introduction - State of AC power networks Page 3

Ability of AC power network for more RES penetration Page 9

DC grid deployment -Solution for power network of the future Page 16

DC grid primary and secondary control – Plug and play philosophy Page 22

Conclusion Page 56

VSC-HVDC point to point control

Recall on AC network control

Multi-terminals DC grid control

Page 22

Page 43

Page 47



Recalls - Control – AC Network

Transmission Network frequency  control

(same for voltage control)

Local control (ms) : Generator control, node

Primary control  (s) – global control but distributed 

control

Real time control via statism (droop) – each generator 

(node) is assigned with statism (ki) and know how much 

power to inject into the grid � ΔΔΔΔP = P = P = P = kikikiki/K /K /K /K ∆F

Secondary control (mn) – global control – for F=Fref, 

new references calculation � Pi=P’i

Tertiary and Load shedding (decoupling)

F
ro
m
 c
o
n
tr
o
l p
o
in
t 
o
f 
vi
ew

: 
S
ys
te
m
 o
f 
sy
st
em

s

Space and time scale system

Plug & Play system already 

exists in AC network

Power Grid Control

Should satisfy 3 conditions ton ensure power flow. 

Each time, we should respect:

(1) : Generated Power = Consumed Power

(2) : F = F0 ± 0.5Hz

(3) : V = Vref ± 5%



Recalls – Primary control  – Droop (Statism)

Each generator contributes to the primary control follows:

The droop is defined as:

Case of network with N interconnected generator:

Each generator droop

Network droop (statism)

Network tuning energy



Recalls – Primary control  – Droop (Statism)

Power repartition between generators For N generators

The contribution of each generator is:

Réseau A

KA

Réseau B

KB

∆Pc1

Echange

Réseau C

KC

∆Pc2

Echange

System of systems approach

Final value automatically calculated and achieved

(balanced power)

Reference variation according to system stability

Could be applied to 

networks interconnection
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n-1 converter are controlling their active power injection 

One bus controls the DC voltage

� The slack bus adapts the output power automatically to compensate for the power 
variations in the DC system

One system operator would have to cope with all the problems on the DC grid.

The ‘Master/Slave’ strategy

Multi-terminals DC grid control strategies



The ‘Margin control’ strategy

A converter works as slack bus until it reaches its upper or lower limit of power injection.

An other converter which works as P-controller takes over the duty of controlling the DC 
Voltage and becomes a slack bus, where the old slack controls the Dc power injection on its 
maximal or minimal value.

Multi-terminals DC grid control strategies



The ‘Droop Control’ (statism) strategy
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Multi-terminals DC grid control strategies

Deviation of the steady-state DC voltage levels



Dead-band-droop Control

Undead-band-droop Control

Multi-terminals DC grid control strategies



Normal Operation: without disturbances

Test case: 3 nodes multi-terminals DC grid

Implementation (Matlab Code) Simulation (SimPower) 



Master/Slave, with power-Step-Change at node 1
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Droop Control
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The droop constants:

Test case: 3 nodes multi-terminals DC grid
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� DC grid power grids will be part of the power network of the 
future

� Time scale technique is solution for system of system control 
with plug and play philosophy

� Protection of DC grids is a real concern

� Power electronics based  devices have to be developed 
(DC/DC transformers, DC circuit breakers, …) 

� New control techniques need to be developed for such systems 
(complex systems, Synchronization, Chaos, …..)

Conclusion
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