# **Control and Electricity Markets**

Arman Kiani Anuradha Annaswamy

Active-Adaptive Control Laboratory

Department of Mechanical Engineering

Massachusetts Institute of Technology

Tariq Samad

Honeywell Automation and Control Solutions





## Outline

- Current Market Practice
  - Goals
  - Tools and timeline
- Smart Grid Implications
- Control & Electricity Markets
  - Current Mechanisms LMP, TOU, CPP
  - Emerging Framework: Transactive Control
  - Simulation studies





### **Power Grids: Goals**

### Maintain balance between generation and load

- Generation = Demand + Losses
- Voltage & Frequency regulation

#### **Main Tools:**

- Economic Dispatch determines set-points
  - Generation resources dispatched from least to most expensive, based on demand projections
  - Use reserves to meet actual demand
- Regulation
  - Automatic Generation Control (AGC)
    - Secondary and Primary Control





## **Electricity Market**

### **Goals of Market Operation**

- Ensure a reliable and secure grid
- Facilitate economical operation



Reliability



**Affordability** 





# **Electricity Market**

- Centralized mechanism that facilitates trading of energy between buyers and sellers.
- The market operator conducts an auction market and schedules generators based on bids received.
- Determines a market clearing price (Locational Marginal Price (LMP)) and provides commitments and schedules based on security-constrained unit



GenCos and ConCos

**Production Schedule** 





# Wholesale Market: A Dynamic System



## Market Mechanisms - LMP







## Wholesale Market: Constrained Optimization

$$Min. \sum_{i=1}^{N} C_i(P_{gi})$$



### Subject to:

$$B=\sum_{i=1}^{N} P_{gi} - \sum_{j=1}^{L} C_i(P_{lj}) - Loss = 0$$
 System balance

$$T = \sum_{i=1}^{N} S_{ki} P_{gi} \le T_k^{max}$$
,  $k = 1, 2, ..., K$  Transmission constraints

$$P_{gi}^{min} \leq P_{gi} \leq P_{gi}^{max}$$
,  $i = 1, 2, ..., N$  Capacity constraints

#### **Equivalent to**

Min 
$$L = \sum_{i=1}^{N} C_i(P_{gi}) + \rho B + \mu (T - T_k^{max})$$
 (if no capacity constraints)





## **Smart Grid Implications**

#### Goals

- Reliable and affordable power
- Voltage and frequency control
- Security

#### **Drivers**

- High penetration of Renewables
  - Decarbonization
  - Climate changes
- Increasing demand for energy

#### Challenges

- System of Distributed Systems
  - Heterogeneous
  - Intermittencies and uncertainties
  - Time-scales: Seconds to seasons
  - Synergy between power & communication

### **Emerging Tools**

- **Demand Response** 
  - Adjustable demand in response to grid/market conditions
- Smart meters/ PMUs
- **Transactive Control** 
  - the use of distributed communications to send an incentive signal and receive a feedback signal within the 9 power system's node structure. Labora





## Renewable Energy – Intermittency & Uncertainty



Courtesy of the Los Alamos National Laboratory





### Renewable Energy – Intermittency & Uncertainty



Courtesy of the California ISO PV output in 3 typical days Dec. 2-5. 2011





# Demand Response – "Actuators"

- Customers reduce consumption in response to
  - o Reliability events, wholesale prices
- Ways of reduction
  - Load reduction for a specific time
  - Load shifting
- Incentives based on time and amount









## Transactive control: An Emerging Paradigm

The use of distributed communications to send an incentive signal and receive a feedback signal within the power system's node structure

- Incentive Signal: Dynamic Pricing
- Feedback Signal: Adjustable Demand
- Grid-wise Implications
- Transactive Control → Control architecture that coordinates
  - Market Transactions
  - Active Control at the AGC level





## Transactive control: Dynamic Pricing



#### Some Examples:

- Critical Peak Pricing (CPP)
  - During scarcity in production
  - o Power retailer can assign a high price
  - Sometimes linked with TOU
- Peak-time Rebate
  - Each customer entity has its own baseline calculated based on similar days surrounding event
  - Customer gets a bill credit for all reduction below their baseline
- Real-time pricing (RTP)
  - Assign the actual price of that hour for consumption





### Transactive control: Introduces Feedback!



#### Goals

- Reduced congestion
- Integration of renewables
- Reduced utility cost





## Proposed Transactive Control Framework







### Transactive control framework: Market Level



$$L = \sum_{i \in G_f} C_{G_i}(P_{Gi}) - \sum_{j \in D_q} U_{Dj}(P_{Dj}) + \sum_{n=1}^N \rho_n B + \sum_{k=1}^{N_t} \gamma_k \left[T - T_k^{max}\right]$$
 
$$\Delta P_G(k) = -k_G \frac{\partial L}{\partial P_G} \qquad \text{(Generation)}$$
 
$$\Delta P_D(k) = -k_D \frac{\partial L}{\partial P_D} \qquad \text{(Demand)}$$
 
$$\Delta \rho(k) = k_\rho B \qquad \text{(Real-time Price)}$$

 $\Delta \gamma(k) = k_{\gamma} \max(0, T - T^{max})$  (Congestion) 17

### Transactive Control: Market Mechanism

The overall dynamic model:

$$x[K+1] = (I_n + hA)x[K] + hk_{\rho}\Delta + b$$

$$x(K) = \begin{bmatrix} \{P_G\}_i & \{P_D\}_j & \{\delta\}_n & \{\rho\}_n \end{bmatrix}_{(n)\times 1}^T$$

$$A = \begin{bmatrix} -k_g c_g & 0 & 0 & k_g A_g^T \\ 0 & k_d c_d & 0 & -k_d A_d^T \\ 0 & 0 & 0 & k_{\delta} Y^T \\ -k_{\rho} A_g & k_{\rho} A_d & k_{\rho} Y & 0 \end{bmatrix}$$

 $n:N_g+N_d+2N-1$   $N_g:\#GenCo$   $N_d:\#ConCo$  N:#buses  $k_g,k_d,k_\delta,$   $k_\rho:$  Parameters of the RTM dynamic model

- Quantifies effect of volatility and stability
- Can help reduce reserve costs with wind uncertainty





# Simulation Results

- 4-bus network with two generator units at node 1 and wind at bus 2 (Pg1: Base-load; P<sub>g2</sub>: Reserve)
- L<sub>1</sub>, L<sub>2</sub>: DR-Compatible demand



Parameters with following values:

cg1 = 0.25; cg2 = 0.55; generator cost coeficientes

bg1 = 40.2; bg2 = 60; generator cost coeficientes

kg1 = 0.3; kg2 = 0.8; generator time constants

cd1 = cd2 = 0.4; consumer utility coeficientes

bd1 = bd2 = 70; consumer cost coeficientes

kd1 = kd2 = 0.3; demand time constants

k = 0:7; LMP time constant (market time





### Simulation Results: Market Stability & Volatility

Volatility: With increased demand-elasticity ( $k_d$ )

Stability: With increased latency  $(k_{\rho})$ 









## Simulation Results: Effect of Wind Uncertainty

#### Wind Properties:

: Actual Wind Power

— : Mean value of the projected wind. → Current Market Practice

— : ARMA model of the actual wind power. → With Transactive Control









### Transactive Control: Reserve costs

Less reserve is required.







### Transactive Control: Hierarchical coordination



# Summary

- Current Market Practice
  - Goals
  - Tools and timeline
- Smart Grid Implications
- Control & Electricity Markets
  - Emerging Framework: Transactive Control
  - Provides guidelines for volatility and stability
  - Helps reduce reserve costs
  - Hierarchical coordination



