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Outline

e Current Market Practice
— Goals
— Tools and timeline

 Smart Grid Implications

 Control & Electricity Markets
— Current Mechanisms — LMP, TOU, CPP
— Emerging Framework: Transactive Control

— Simulation studies
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Power Grids: Goals

Maintain balance between generation and load

e Generation = Demand + Losses
e Voltage & Frequency regulation

Main Tools:

e Economic Dispatch - determines set-points
» Generation resources dispatched from least to most expensive,
based on demand projections
» Use reserves to meet actual demand

e Regulation
» Automatic Generation Control (AGC)
O Secondary and Primary Control
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Electricity Market

Goals of Market Operation

e Ensure areliable and secure grid
e Facilitate economical operation

Affordability

Reliability
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Electricity Market

Centralized mechanism that facilitates trading of energy between buyers
and sellers.

The market operator conducts an auction market and schedules generators
based on bids received.

Determines a market clearing price (Locational Marginal Price (LMP)) and
provides commitments and schedules based on security-constrained unit
commitments
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Wholesale Market: A Dynamic System
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Market Mechanisms - LMP
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Wholesale Market: Constrained Optimization

: N Economic _
Min. Zi:l C; (Pgi) Dispatch — Foupo it

Subject to:

B= Zl 1 Pgi — §=1 Ci(Plj) — Loss = 0 System balance
T = 2 Skl P < T}:nax’k = 1,2, ..., K Transmission constraints

P;ilm < Py; < P;imx,i = 1,2, ..., N Capacity constraints

Equivalent to

Min L = Zﬁvzl C; (Pgi) + pB + u(T — le’nax) (if no capacity constraints)

IIII— P;;: Generation Schedule at Node i, p: LMP, u : Congestion rent A
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Smart Grid Implications

Goals

e Reliable and affordable power
e Voltage and frequency control
* Security

Drivers

e High penetration of Renewables
O Decarbonization
0 Climate changes

* Increasing demand for energy

Challenges

e System of Distributed Systems
O Heterogeneous
O Intermittencies and uncertainties
O Time-scales: Seconds to seasons
O Synergy between power &
communication

Emerging Tools

e Demand Response
O Adjustable demand in response
to grid/market conditions
e  Smart meters/ PMUs

e Transactive Control
O the use of distributed
communications to send an
incentive signal and receive a A
feedback signal within the o A
power system’s node structure. |aboraioy



Renewable Energy — Intermittency & Uncertainty

6 Five-turbine WindBlade Simulation
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Renewable Energy — Intermittency & Uncertainty
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Demand Response — “Actuators”
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Transactive control: An Emerging Paradigm

The use of distributed communications to send an incentive

signal and receive a feedback signal within the power system’s
node structure

* Incentive Signal: Dynamic Pricing
 Feedback Signal: Adjustable Demand

e Grid-wise Implications

e Transactive Control — Control architecture that
coordinates

> Market Transactions
» Active Control at the AGC level
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Transactive control: Dynamic Pricing

‘Transactive Some Examples:
Control

e Critical Peak Pricing (CPP)
O During scarcity in production
O Power retailer can assign a high price
O Sometimes linked with TOU
e Peak-time Rebate
MW, O Each customer entity has its own baseline
calculated based on similar days surrounding
event
O Customer gets a bill credit for all reduction below
their baseline
e Real-time pricing (RTP)
O Assign the actual price of that hour for
consumption
A
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Transactive control: Introduces Feedback!

l

Transactive B Must accommodate

(1SO) C I e grid-constraints
Ontro e costs
l &8 RTP
Demand
Bids <€ Needs to be
properly modeled
Goals
* Reduced congestion
* Integration of renewables
e Reduced utility cost
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Proposed Transactive Control Framework

Market Transactions
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Transactive control framework: Market Level
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APG(k) — _kGaaTIé; (Generation)
APD (k‘) — —kD 88?[;9 (Demand)
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Transactive Control: Market Mechanism

The overall dynamic model:
x[K + 1] = (In + hA)x|K] + hk,A + b

x(K)= [{Pc}i {Pp}i {0}n {P}n](:)n

=7 0 kgAl'T
0 ded 0 —de;
0 0 0 kYT
| —k Ay kAd koY 0

n:Ng+Ng+2N—-1 Ng:#GenCo Ngy:#ConCo N : #buses
kg, kd, ks, k,: Parameters of the RTM dynamic model

A =

e Quantifies effect of volatility and stability
e Can help reduce reserve costs with wind uncertainty A
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Simulation Results

e 4-bus network with two generator units at
node 1 and wind at bus 2 (P,,: Base-load;

P.,: Reserve)

L,, L,: DR-Compatible demand

Parameters with following values:
cgl = 0.25; cg2 = 0.55; generator cost
coeficientes

bgl =40.2; bg2 = 60; generator cost
coeficientes

kgl = 0.3; kg2 = 0.8; generator time
constants

cdl = cd2 = 0.4; consumer utility
coeficientes

bd1 = bd2 = 70; consumer cost coeficientes
kd1l = kd2 = 0.3; demand time constants
k = 0:7; LMP time constant (market time

constant)
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Simulation Results: Market Stability & Volatility

Volatility: With increased
demand-elasticity (k)
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Simulation Results: Effect of Wind Uncertainty

Wind Properties:
: Actual Wind Power
— : Mean value of the projected wind. = Current Market Practice
— : ARMA model of the actual wind power. 2 With Transactive Control
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Transactive Control: Reserve costs

e Less reserve is required.
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Transactive Control: Hierarchical coordination
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Summary

e Current Market Practice
— @Goals
— Tools and timeline

 Smart Grid Implications

e Control & Electricity Markets
— Emerging Framework: Transactive Control
— Provides guidelines for volatility and stability
— Helps reduce reserve costs
— Hierarchical coordination
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