

Mats Larsson, Corporate Research ABB Switzerland

Wide-area Monitoring and Control for Electric Power Systems

HYCON2 Workshop on Energy, Bruxelles 2012-09-04

Outline

- Monitoring and Control of Power Networks
- Angle and Frequency Dynamics in Power Systems
- Wide-area Monitoring and Control
- Power Damping Monitoring (PDM)
- Pilot Experience from swissgrid
- Conclusion

A Simple Power System

- Dam acts as long term energy storage
- Generator/turbine act as short term energy storage

$$2H\frac{d\omega}{dt} = P_{mech} - P_{elec} - D\omega$$

$$\frac{d\delta}{dt} = \omega - \omega_s$$

 Governor control adjusts mechanical power to keep frequency constant

Static Stability of a Generator How do generators stay synchronized ?

- Increased generation requires increase in load angle (δ)
- Stable only for $\delta{<}90^\circ$
- There is a maximum power transfer capacity Pmax

Generator Connected to a Strong Grid Classical Generator Model

$\frac{2H}{\omega_s}\frac{d^2\delta}{dt^2} + \frac{1}{\omega_s}$	$\frac{D}{\omega_s}\frac{d\delta}{dt} + \frac{V_1V_2}{X}s$	$\sin \delta = P_{mech}$
linearise around $\delta = \delta_0$ and		
set $K = \frac{V_1 V_2}{X} \cos(\delta_0)$:		
$\frac{2H}{\omega_s}\frac{d^2\Delta\delta}{dt^2}$	$+\frac{D}{\omega_s}\frac{d\Delta\delta}{dt}+K$	$\Delta \delta = 0$
\bigwedge	\bigwedge	
Change in stored energy	Damping power	Synchronizing Power

WSCC Blackout, USA August 10, 1996

Oscillations in an Interconnected Grid

- Theoretically each pair of generation units can form an oscillatory mode
 - Local modes
 - Inter-area modes
- <u>Video</u>1 (Macedonia, medium res)
- <u>Video</u> 2 (Macedonia, high res)
- <u>Video</u> 3 (Italy, high res)

ABB – Phasor Measurement Unit RES 521 Provides High Accuracy

- Phasor Measurement Units (PMU)
- Voltage and Current Phasors
- Synchronization by GPS clock
- Timestamp accuracy < 1 microsecond
- Angle accuracy < 0.1 degree
- Programmable action logic
- 4x3 Current inputs
- 2x3 Voltage inputs
- 8 binary inputs/outputs
- Synchrophasor data format IEEE 1344 or C37.118 over TCP (IP & UDP)

Wide-area Monitoring and Control

WAMS Application Overview

- Advanced Visualization of Raw Measurements
 - Voltage and Phase Angle Profiles
 - Real-time Power Swing Display
 - Phasor-assisted or Linear State-estimation
 - Contour Mapping / Geographical Displays
- Monitoring & Prediction of Transmission Capacity (Wide Area Monitoring)
 - Corridor Voltage Stability Monitoring
 - Power Oscillation Monitoring
 - Line Thermal Monitoring
- Coordination of Actions in Emergency Situations (Wide Area Control and Protection)
 - Emergency FACTS/HVDC setpoint reschedu
 - Wide-area control for Damping of Power Osc

Ambient vs Transient Oscillations

Power Damping Monitoring PDM

- Capabilities
 - Accurate determination of damping level under ambient conditions
 - Mode shape determination
 - Possibility of incorporating probing signals
 - Use of multiple input signals
 - Simultaneous detection of multiple modes

Power Damping Monitoring (PDM) Principle

- Sliding window of 10-15 minutes length
- Estimate MIMO statespace model

x(k+1) = Ax(k) + Bu(k) + Ke(k)y(k) = Cx(k) + Du(k) + e(k)

- e(k) background power system load variations
- u(k) probing signals (optional)
- y(k) angle difference measurements
- Carry out modal analysis
 - Damping & frequency of critical modes
 - Visibility in different measurements (mode shape)
 - Activity in each mode

swissgrid PSGuard

ENTSO-E Major Oscillation Modes found by PDM

ENTSO-E Disturbance 2011-02-19 Summary of Events

- At 08:00 on morning of 2011-02-19 a major oscillation starts growing in the north-south direction
- The north-south mode is significantly excited
- The oscillation grows to a peak amplitude at 08:09
 - of +/- 100 MW measured at Soazza on the connection to Italy
 - of +/- 120 mHz measuread in southern Italy
- The oscillation is damped out at around 08:16
- Two smaller oscillations are excited at 08:38 and 09:00, respectively

PSGuard Frequency Recording Raw Data

Filtered PSGuard Frequency Recording Zoomed in at 8:09

PDM Results I – Oscillatory Activity (xy-plot)

- Very poorly damped oscillations at 0.25 Hz main oscillation (worst -2%)
- East west-mode (0.13 Hz) still detected, but well damped

PDM Results II – Time Series

Wide-area Control Pilot Test in Norway

- Wide Area Power Oscillation Damping control WA-POD
- Chose feedback signals from any PMU equipped substation in Nordel
- Coordinated POD action from several actuators (SVC, FACTS, Generators)
- Prototype WACS implemented and tested
 - PMU-PCU400 PDC-MACH2 control system
 - Wide Area Power Oscillation Damper (POD) with local signal based POD as backup

Conclusion

- Wide-area Monitoring and Control improves upon traditional SCADA/EMS system with a factor of 10-100 in terms of resolution
- Enables monitoring and control of dynamic (stability) phenomena
- Power damping monitoring validated and transferred to commercial product
- Active control of oscillations demonstrated in pilot test