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Introduction and Motivation
Renewable Energy Expansion
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Sustained high growth rates of
iIntermittent renewable energy
worldwide (mainly wind and solar)

Certain European countries with
highly above-average contributions
of one specific technology

= Denmark, Spain, Germany
(wind)

= Germany, Italy (solar PV)
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Introduction and Motivation

Renewable Energy Expansion = Low capacity factor of RES
- 238 (wind: ~20-30%, PV ~10-20%)
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Introduction and Motivation
Challenges for the Power System

Lack of energy in
some instants,
large excess in

others

Increased ramp
rate of the residual
load

Uncertain available
capacity for serving
peak demand
(system adequacy)

Grid congestions
on transmission
and distribution

level

Predictions errors
of intermittent in-
feeds
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Introduction and Motivation
Challenges for the Power System — Mitigation Options

Lack of energy in
some instants,
large excess in

Increased ramp

Uncertain available rate of the residual

capacity for serving load
others peak demand ~rid :
Predictions errors ™. (system adequacy) Grid congestions

on transmission
and distribution
level

of intermittent in-
feeds

v

—> Dispatchability of previously non-dispatchable resources (intermittent
renewables, flexible demand)

-2 Increased system flexibility (generation, load, storage), close coordination
and co-optimization of resources (e.g. in Virtual Power Plants)

— Transmission and distribution grid expansion or “smarter” utilization
leveraged by advanced control and ICT
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Leveraging Demand-Side Flexibility

What kind of demand is flexible, and in which way?

h power systems
laboratory

®

ER

: : _ = S

= Residential and commercial thermal loads =§
=~ =
(water heaters, heat pumps, A/C =5

o/
U FS
&

refrigerators, refrigeration warehouses)

— Controlled deactivation (+energy shift)

— Controlled activation (+energy shift)
= Manually shiftable residential demand i3y
(dish washer, washing machine, tumbler)
— Deferred utilization
Interruptible industrial processes
(steel and concrete mills, industrial heating, ...)

— Deferred utilization
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Leveraging Demand-Side Flexibility

Traditional Views on Demand Response Perspective 2

Shave the peaks if

/ \ necessary by manual
Defer the load of electric heating demand response

etc. to the night hours. Main
motivation: peak shaving for
distribution infrastructure

Perspective 1

= Manual curtailment (possibly disruptive)
of load during hours of extremely high
\ protection / demand (e.g. h.ot summ.er in California)
—> selective curtailment only
= Manually or automatically activate electric
heating and electric water heaters at

Perspective 3

night, take advantage of heat storage Balance 15-minute
capacity energy values
- controlled activation of load
In larger groups = Selectively activate and deactivate switchable

loads for balancing 15-minute energy schedules

->controlled deactivation and
activation on shorter time scales
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Leveraging Demand-Side Flexibility

Recent Perspectives Demand
Response
Incentive-based Market Frequency-based
decentralized participation by decentralized
decision final customer decision

Rationale of the approach:

Send price signals to Use automated agents Measure frequency in  § Achieve setpoint tracking
customers, try to to negotiate supply and appliances and adapt and derive setpoint from
anticipate their reaction demand by bidding consumption behavior pursued control goal

Time scale of influence:

(Mainly) Day-ahead (Mainly) Day-ahead Real-time operation Close-to-real-time

Main purpose:

Influence on daily load Influence on daily load Primary control or Shifting, balancing,
curve (shifting) curve (shifting) disturbance reaction frequency control
Unit types:
Shiftable load, Shiftable load, Thermal load for Thermal load, controllable
generation, storages generation, storages primary, all load for dist. generation, storage
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Leveraging Demand-Side Flexibility
Hierarchical Coordination and Control Concept

Requirements of balance
group or distribution grid

~

Dispatch Algorithms po'/'/er
= Cost-optimal dispach Segy

= Control reserves \
= Ramping reduction
_ pINg

Coordination/Agaregation
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SWitChing
impulses

Actyag Power ., - Setpoint tracking
Storage SOc e algorithms
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Appliance Models

Refrigerators
Electric water
heaters

Heat pumps /

Requirements of final
customers
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Leveraging Demand-Side Flexibility

Setpoint Tracking Algorithms — Example: 1°000 air conditioning units

Temperature State Evolution for 200 TCLs (randomly chosen out of 1000)

Energy

Power

0 1 2 3 4 5 ﬁ 7 E. 9 10
Time [h]

- Storage characteristics
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Modeling Virtual Power Plants by “Power Nodes*

Virtual Power Plants

= |CT-linked pools of diverse units gl 1 = ___l,j a
operated in a coordinated way - — s

= Joint participation in energy and | # L s - K
ancillary services markets .. EI SR e

C h a| I e n g es Image source: Open Systems International

= Partial or no controllability of certain units
= Power and ramp-rate constraints
= Ability to store energy (= State of Charge constraints)

= Diverse efficiency, operational requirements, optimal working points, cost
structure, ...

WANTED
A unified concept to model generation / load / storage

— portfolios consisting of diverse units from a system
(= network) perspective
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Modeling Virtual Power Plants by “Power Nodes*
The Power Node T capeaye Y G

Modeling Framework ooy | oz T
|

£>0 o lg T
demanded energy &

(heat, light, ...) TioadUjo
£<0 . Internal losses
spilled energy L Hgen
(wind, water,...) w :
. w>0 <H—

Storage capacity unsorvedioad |\ o w20 |

X w<0 conversion

storage process &

state-of-charge fosses . losses
Power out- - '
ower ou Power in-feed Shedding term

feed from grid to grid Ll
|_* —

: 1
CX = nloaduload N ngenugen é: —W—V

Efficiency factors —T—T rf

Provided / demanded power
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Modeling Virtual Power Plants by “Power Nodes*
General power node:  CX = 77,0.dUi0aq — TaenUgen + & —W—V

Electric water heaters Conventional power plant wind power plant

= Time-dependent = Fully dispatchable = Time-dependent
dispatchable load generation dispatchable generation,
(heating element) = No load, no storage (C) if wind blows, ¢ >0, and if

= Constrained "storage’ .  Fuel natural gas (&0) energy waste term w>0
(C= 10 kWh) N = No load, no storage (C)

= Demand: hot water, ngenugen — é: = Fuel: wind power (¢>0)
daily pattern (¢< 0), 1
internal heat loss (v>0 — — F —
! (v ) ngenugen - 5 w

CX = nloaduload + é —V
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Dispatch Strategies for Control Services
Dispatch with Model Predictive Control

e e h power systems
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. . .. . States/Inputs
= Joint predictive optimization of a power./ s Now N N
node portfolio Hl) el 50
= Cost function and constraint design 7/ o
. i e ui
allows to cover a variety of use cases. -realied .
Values redictions ") Time
Least-cost dispatch _—— N S
N k=k, k=Jy+ Ny~ 1 /
Market-baSEd VPP Opel’atlon _ kop1 Optimization frequency: B
) .. ;| once every &, steps
Balancing of schedule deviations s States/nputs ' i ~
Provision of frequency control reserves |~ [ Fooooooos > |
uﬂ/\
Capacity firming of intermittent / N jj*(l)
generation x(k) _I_\_‘_ “‘:(!-)--—-::.:
‘ prneny U Ay g
Peak ShaVIng R\[/e:lllljzeesd '““I;r.(;dictions Time
Residual load ramp-rate reduction e . —
\ k=1k, k:k_,JrNDpt-]
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Dispatch Strategies for Control Services
) Yen naturaicas ] Ygenwing (D Vocr pumpecriyaro I Yo Lo [ S

Least-cost dispatch

‘:I ugen,Biomass - ugen,PV - ugen,Battery - uIDad,EWH - uload,Battery

% 10° Grid inputs (>0) and outputs (<0)

= Minimize endogenous
operation cost based on
predictions:

k+l‘\' opt —

Jk = Z Jetldo{z)

P MW
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Spv
- = L.\ = el - SLoad £
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Dispatch Strategies for Control Services
Frequency Control Reserves

= [ntroduction of auxiliary
One-Bus
Power Balance Control Power Node pOwer nOdeS

Power Node
Portfolio

| EANAL = Optimize for coverage of the

4
A &P (K) (control Signal)

control signal with minimal cost

Slack Power Node

! ‘A” gen slack cL
-ﬂ'ugsn >0 -ﬁugen 1 -Auload> 0

CL gen slack
-Auload‘:0 A‘ugen<0 -Augen =l

gen.slack

Control signal

| ..
Cost Terms, 1 :Dewatmn
Constraints ', State Info, i Penalty

i Predictions !
vV b4

Optimization

= Cover (most of) control signal by
flexible load

Setpoints

Control Contributions

= Utilize generator to refill storage
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Dispatch Strategies for Control Services

Import/Export of the portfolio
T T T

I I I I
I (mport from external source
[ Export to external sink

Time [days]
Import/Export of the portfolio

207 T T T T T T T T
. | I |mport from external source : : :

15+ I Export to external sink

Time [days]

= |In-feed of intermittent generation can
attain low values

—> lack of reliably available capacity

= Increasing the minimum in-feed by
dispatching flexible units accordingly:
k+Nyp—1

* *1 k
Jp = E Jendo(l) — Teap - min Upeng (1)
D [ load
— 1€[k,k+Nops—1]

Residual load can exhibit high ramps

—> high strain on conventional
generation assets

= Smoothing via dispatch of flexible units:

k4Nopi—1 1« k+Nop,—1
slack slack 2 *
T o= > Tramp 3 (Toaa (D) + > Jenao(l)
=k 8 I=k

Import/Export of the portfolio

P [MW]

A Import from external source
I Export to external sink
| [ | [

1 2 3 4 5 6 7 8 9 10 1 12 13 14
Time [days]

Import/Export of the portfolio

P [MW]

o I |mport from external source
I Export to external sink
I I I I

5 6 7 8 9 10 1 12 13 14
Time [days]

Tuesday, September 4, 2012

ETH Zurich, EEH — Power Systems Laboratory



ETH

Eidgendssische Technische Hochschule Zirich

e e h power systems
laboratory

Swiss Federal Institute of Technology Zurich

Dispatch Strategies for Control Services
Distribution Grid Optimization

B rreoer [ Viackan
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(Master's Thesis Philipp Fortenbacher, PSL, October 2011)
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Application Potential for Advanced Optimization and Control

= Modeling unit nonlinearities
u Battery models

m Non-constant generation
efficiencies

= and discrete state events

u Plant start-up and shut-down

u Network topology switching

A

~

( Large appliance populations:
Saving measurements and
communication requirements by

=  Sophisticated control algorithms

n

Control + state estimation

Comm. + measurement

\ u State estimation techniques j
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Application Potential for Advanced Optimization and Control

= EXxplicit consideration of -
prediction uncertainties

u Robust MPC, e.g. for
worst-case in-feed

Modeling unit nonlinearities
u Battery models

= Non-constant generation

. . . efficiencies
scenario consideration

: :
= Chance constraints, e.g. and discrete state events

applied to thermal =  Plant start-up and shut-down

comfort zone in buildings =  Network topology switching

A Large appliance populations: (= Application of extremely fast
Saving measurements and code-generating optimization

communication requirements by solvers for extensive Monte-

. . Carlo-type scenario simulation
=  Sophisticated control algorithms

= Infrastructure sizing

=  State estimation techniques
K / = Economic viability assessment
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Thank you for your attention!

Stephan Koch
koch@eeh.ee.ethz.ch
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