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In the context of optimization, control, estimation, decision making, computation,
etc, the word DISTRIBUTED is used with different meanings:

The task is distributed over many agents in order to speed up the task
completion (i.e. parrallel computers).

The system itself is constituted by several interacting parts which need to be
coordinated (i.e. wireless sensor networks).

In the context of the distributed decision models we can distinguish:

Distributed decision models with leaders or with a hierarchy (based on
spanning trees construction).

Leaderless distributed decision models in which the agents are peers in the
network. Here the goal is not perfomance, but the robustness and the of self-

organization.




.)(A. o e O\

\\\\x‘f‘ Distributed decision models

Distributed control system
@ L \ -
(>

I

Distributed physical system




) S e )

: ’ A e O\

e T R e . o .

AN Distributed decision models
"’ \,‘ ‘\y\‘.. ""\";""'
ARV Do e =

Communication
link Control unit

Sensing Actuation

Distributed physical system

- - -




i LA
] =l 'Y :—\‘"kg_‘\‘ /)’>
sy G\ AR A\
44:\‘ ) *',:_' ‘.." 1 ';. .. ,}‘l,
g \\ \‘ ;‘w\j \*\ ,. ”\\"}{\
NI\ B AR A
1 5 3 ol i
f‘ \ \ \'? A ‘x ,:'--.‘

Distributed decision models

Example

. robotic networks

Kiva systems
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Centralized vs. Leaderless

For large scale systems centralized architectures tends to be

More efficient
Fragile to failures and to external changes

Expensive in the configuration phase

For large scale systems distributed architectures tends to be

Less efficient
Robust to failures and to external changes (ex: market based economy)

Cheap in the configuration phase (plug and play)




Social and economic networks: individual social and economic
interactions produce a global equilibrium (market robustness)
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«—«\ Power distribution network
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Centralized architecture = - & - - -
- Efficient

- Local sensing (voltage)

- Local control (injection of reactive power)
- Global and synchronous communication
- Global grid model

- Expensive configuration
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@iy - Distributed architecture
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Distributed leaderless architecture

- Less efficient

- Local sensing (voltage)

- Local control (injection of reactive power)

- Local and asynchronous communication
- Local grid model

- Cheap configuration
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Al & The reactive power

We have reactive power whenever voltage and current are
out of phase, I.e. phase angle is not zero.
Users in the microgrid may require reactive power

It can be obtained from the utility which in this case charges the
microgrid

It can produced by the electronic interfaces of microgenerators in the
microgrid with (essentially) no cost

Transporting reactive power costs since it yields losses on the cables

Consequently it is convenient to generate reactive power
close where it Is needed
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Power lines: impedences i.e. linear constraints on currents and voltages

Microgenerators/loads: linear constraints in the (active and reactive) powers
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A model of a microgrid

Sinusoidal regime

We assume that the circuit is at the sinusoidal regime at a certain fixed
frequency. In this way every signal u(t) are described by a complex
number u € C describing amplitudes and phases

u(t) = |u| cos(wt + Zu)
where |u| is the absolute value of u and Zu is the phase of v.

u
u .
u Sy U= ule/<Y
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A model of a microgrid

i § Variables of the model

u(x) potential at node x
i(x) current at node y
j(e) current at edge e

Z(e e) impendence at edge e

u(x)
§ i(e) % complex numbers




.". " '_.\,:\‘ ‘1: )‘\\\'\' ' '.‘;\X.\,; \

The utility ensures that the voltage at the node 0 is equal to the nominal
voltage Uy

node O
Qe

= Un




Al A model of a microgrid

The node x inject in the grid the complex power s(x) = u(x)i(x)*

b(x) = Rels(x)] active power

g(x) = Rels(x)| reactive power

5




-----
: )

@i A model of a microgrid

The cost to be minimized is the Power Loss (PL)
PL =) Re[Z(e)]lj(e)/’

The inputs (control/disturbances)
* Uy (nominal voltage)
* s (the vector having as entries the injected complex powers s(x))

The cost PL is a nonlinear function of the imputs

PL = F(S, UN)




@i A model of a microgrid

Grid parameters:
Topology, impedences

[Nominal voltage Uy ] >

4 )

Decision variables Power losses

Microgrid | _"L=FU

Complex power s(x)

Namely >
Active powers p(x)

Reactive powers q(x)
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A= Minimization of the power losses

min F(Un,s)
over s
subject to constraints

NON-CONVEX OPTIMIZATION PROBLEM: difficult to
solve in a distributed way
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Approximation of the cost

HYPOTHESIS: Z(e) = e”R(e) where R(e) is a real number

Taylor Expansion

For big Uy, minimizing F(s, Uy) is equivalent to minimizing the
quadratic function

s*Ms
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A= Approximation of the cost
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HYPOTHESIS: Z(e) = e”R(e) where R(e) is a real number

Approximation of the gradient of the cost function

If Uy is big, then

g el?
erad F(s, Uy) ~ 2C°‘L (u— Unl)*

“

The gradient of F(s, Uy) can be obtained by measuring the voltages
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Distributed lterative Algorithm

Estimation step

The nodes x,y estimate the gradient at x,y from the voltages u(x), u(y) and
exchange these estimates

Descent step

The nodes x, y inject the new powers s(x), s(y) so that the cost decreases

-

X,y se

-

Descent
Step
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§ Os | Gradient
Estimator
N J

ected pair of active nodes
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@\l Distributed Iterative Algorithm
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Result: the power loss converges to an approximation of the optimal power loss

PL(t) — PL
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Conclusions

Leaderless distributed decision models have pros and cons

PROS: robustness to external changes, highly self-adaptiveness and
so need of a limited initial configuration

CONS: sub-optimal performance can be obtained
Only a distributed modeling is needed
Simplified approximated models need to be obtained

Convergence and performance analysis can be done (distance to
optimum)
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