Stochastic MPC for optimal real-time power dispatch and bidding on the energy markets under uncertainty

P. Patrinos, D. Bernardini, L. Puglia, A. Bemporad

DYSCO

Research Unit

DYnamical Systems, Control and Optimization

HYCON2-AD2-WKS - HYCON2 Workshop on Energy

3-4 Sep 2012 Bruxelles (Belgium)

Motivation

Present arrangements in power systems:

- have many inefficiencies
- are not suited to cope with future developments
- didn't have sufficient incentives for "proper" behavior

Neither reliable, nor economic, nor self-regulating*

* Self-regulating: if all parties try to achieve their own goals, the overall objectives are achieved and global constraints are satisfied (incentive-based control)

Outline

- **Stochastic MPC algorithms** for solving complex decision problems arising in management of Balance Responsible Partners (BRP).
 - Real-time power dispatch
 - Bidding on day-ahead (DA) and Ancillary Services (AS) markets

Real-time control of BRPs

- Balance Responsible Parties (BRPs) participate to the various energy markets and trade electricity to satisfy their loads and make profits
- Optimal control of BRPs is a challenging task, as in real-time a BRP must:
- ✓ fulfill its E-Program, plus perturbations induced by uncertainties
 - intermittent generation from renewable sources
 - time-varying internal loads

✓ react to signals arriving from the TSO

- frequency deviations, Ancillary Services bids activated by the TSO
- ✓ minimize generation and imbalance costs
 - time-varying, stochastic imbalance prices
- ✓ consider plants dynamics and respect constraints
 - bounds on power output, ramp-rate constraints

Real-time control of BRPs

- Current practice:
- ✓ **Day-Ahead:** generators schedule and power setpoints computation
 - Unit commitment: power setpoints are based on rough uncertainty estimates
- ✓ In real-time: track setpoints
 - response to momentary input values
- Cons:
 - difficulty in handling ramp-rate constraints
 - difficulty in handling PTU coupling (no integral action)
 - rough economic optimization

P. Patrinos et al.

Stochastic Model Predictive Control

Use a **stochastic** dynamical **model** of the process to **predict** its possible future evolutions and choose the "best" **control** action

HSMPC for BRP-RT Two-time-scale Hierarchical Stochastic MPC controller

- increased profits due to real-time calculation of economically optimal setpoints
- improved **E-Program tracking** due to real-time integral action
- effective handling of ramp-rate constraints, allowing smooth PTU transitions

BRP model on the energy time scale

• Generation costs for each of the n_p generators are modeled as convex quadratic functions of the power p

 $\ell_i^p(p^i) = a_i(p^i)^2 + b_i \bar{p}^i + c_i, \ a_i \ge 0, \ i \in \{1, \dots, n_p\}$

• **Energy Imbalance** is defined as the difference between the energy produced by the BRP and the energy requested by the TSO at PTU n

 $\Delta e(n) = e(n) - e^{\text{final}}(n)$

- If $\Delta(e(n)) > 0$ (surplus), TSO buys this energy from BRP at price $\lambda_{\rm IM}^+$
- If $\Delta(e(n)) < 0$ (shortfall), BRP buys this energy from TSO at price $\lambda_{\rm IM}^-$
- The imbalance prices can be negative, but usually $\lambda_{\mathrm{IM}}^- \geq \lambda_{\mathrm{IM}}^+$
- Hence, BRP **imbalance costs** are computed as

$$\ell_{\mathrm{I}M}(\Delta e) = \frac{1}{2}(\lambda_{\mathrm{I}M}^{-} - \lambda_{\mathrm{I}M}^{+})|\Delta e| - \frac{1}{2}(\lambda_{\mathrm{I}M}^{-} + \lambda_{\mathrm{I}M}^{+})\Delta e$$

Modeling Uncertainty

On-line, using historical data, build an optimal scenario tree with prespecified complexity.

Oata-driven approach. Learning from the past using historical data.

SMPC Historical load, wind, imbalance Optimal Scenario Tree with user-defined number of nodes Upper-Level Suitable for stochastic multistage optimization CE-MPC Not suitable for stochastic multistage optimization !!!

Critical feature for real-time applications We can control the trade-off between complexity and performance!

BRP model on the power-time scale

- Detailed model of **generator dynamics** is considered in the lower level
- This model consists of two parts:
 - **fast model** for primary reserve action, (low and a high pass filter in series):

$$p_{\text{fast}}^{i}(s) = \frac{\tau_{\text{H}}^{i}s}{\tau_{\text{H}}^{i}s+1} \frac{K^{i}}{\tau_{\text{L}}^{i}s+1} p_{\text{prim}}^{i}(s)$$

- slow model for the secondary reserve activation,

$$p_{\text{slow}}^{i}(s) = \frac{e^{-T_{\text{delay}}^{i}s}}{\tau^{i}s+1}(u^{i}(s) + p_{\text{prim}}^{i}(s))$$

- the generator power output is given by their sum, $p^i(s) = p^i_{\text{fast}}(s) + p^i_{\text{slow}}(s)$
- This can be expressed as a discrete-time linear system with 4 states and 1 input for each generator i, $i \in \{1, ..., n_p\}$

$$x^{i}(t+1) = A^{i}x^{i}(t) + B^{i}u^{i}(t) + E^{i}\delta f(t)$$
$$y^{i}(t) = C^{i}x^{i}(t)$$

• The **overall BRP model** is given by aggregating all *n*_p generator models

• Consider a BRP with 10 controllable plants and 1 wind farm

Plant ID	Fuel type	Max efficiency	Min power	Max power	Max ramp rate
#1	Gas	38%	$25 \mathrm{MW}$	$53 \ \mathrm{MW}$	$3\%/{ m min}$
#2	Gas	42%	$25 \ \mathrm{MW}$	$64 \ \mathrm{MW}$	$3\%/{ m min}$
#3	Gas	47%	$133 \ \mathrm{MW}$	$332 \ \mathrm{MW}$	$3\%/{ m min}$
#4	Gas	47%	$133 \ \mathrm{MW}$	$332 \ \mathrm{MW}$	$3\%/{ m min}$
#5	Gas	48%	$140 \ \mathrm{MW}$	$350 \ \mathrm{MW}$	$3\%/{ m min}$
#6	Coal	39%	$240 \ \mathrm{MW}$	$602 \ \mathrm{MW}$	$1.5\%/\min$
#7	Gas	54%	$670 \ \mathrm{MW}$	$1675 \ \mathrm{MW}$	$3\%/{ m min}$
#8	Gas	59%	$280 \ \mathrm{MW}$	$440 \ \mathrm{MW}$	$5\%/{ m min}$
#9	Gas	59%	$280 \ \mathrm{MW}$	$440 \ \mathrm{MW}$	$5\%/{ m min}$
#10	Coal/biomass	39%	400 MW	$800 \ \mathrm{MW}$	$1.5\%/{ m min}$

- Comparison of HSMPC against
 - SetPoint Tracking (SPT) [current practice]: static computation of power setpoints for each plant of the BRP, done on the day-ahead to track the E-Program
 - DMPC: Deterministic MPC formulation where no stochastic models of the uncertainty are exploited
- **Simulation interval:** 16 PTUs (4 hours)

• Historical data have been used to carry out simulations (from TenneT and KEMA)

Internal loads

Activated AS bids

Imbalance prices

E-program

frequency variations

P. Patrinos et al.

• HSMPC outperforms SPT in terms of both constraints fulfillment and total cost

Controller	Generation (€)	Imbalance (€)	Total cost (€)	Savings (€/hour)
SPT	549,257	-3,285	545,973	
DMPC	578,674	-49,057	529,617	4,089
SHMPC	591,517	-73,139	518,378	6,899

- x ramp-rate violations at PTU crossings
- x can't take advantage of imbalance prices
- x higher total cost

power profiles with HSMPC

- ✓ safe handling of ramp-rate constraints
- ✓ exploits imbalance prices to make profits
- ✓ fast response to disturbances

P. Patrinos et al.

Optimal bidding on energy markets

Determine price-volume pairs to bid on the DA and AS market

- ✓ **decoupled** bidding on Day-Ahead and Ancillary Services Markets, **BUT**
- ✓ BRP DA EX takes into account AS bids as stochastic disturbances
- ✓ BRP DA AS takes place after DA price is known. Load and wind are treated as stochastic disturbances

Bidding algorithm on the DA market

Given:

- 1. a discrete set of **spot (EX) prices**
- 2. expected load and wind profiles for each hour of the following day
- 3. generators specifications (min and max power, efficiency, etc.)
- 4. scenarios for AS upward/downward prices (stochastic disturbance)

computes the optimal allocation of energy on the EX market for each hour and for each EX price, such that

- profits (income generation costs) are maximized and
- imbalance risks are minimized,

providing 24 bidding curves, one for each hour of the following day

Bidding algorithm for DA market

Scenario generation: distribution of Ancillary Services prices is inferred from real historical data and used to construct a two-stage scenario tree

Figure 29 Control energy price distribution TenneT NL Q1

Control objective: minimize the **Conditional Value at Risk (CV@R),** a risk measure of the profit that quantifies the average loss above a given threshold

- **Constraints:** min and max power setpoint of the generators, internal energy balance, non-decrease of the bid ladder are imposed as affine equality constraints
- **Problem formulation:** the two-stage optimization problem is formulated as a **Quadratic Program,** that can be solved efficiently

Ancillary Services market

Large BRPs are obliged to commit all their residual capacity on the AS market by submitting AS bids (price-volume pairs)

BRPs **supply** reserve capacity power to the system (**Current system**)

- S^+ : BRP is willing to **be paid** for **injecting** energy (**upward**)
- *S*⁻: BRP is willing to **be paid** for **absorbing** energy (**downward**)

AS price λ^{AS} can be positive (**upward**) or negative (**downward**)

Price	Case	energy direction	cash flow direction
$\lambda^{AS} \ge 0$	S^+	$BRP \rightarrow TSO$	$\text{BRP} \leftarrow \text{TSO}$
$\lambda^{AS} < 0$	S^-	$\text{BRP} \leftarrow \text{TSO}$	$\text{BRP} \leftarrow \text{TSO}$

Bidding algorithm for AS markets

Current situation

- The BRP submits *supply* curves.
 - Positive price for upward RRP
 - Negative price for downward RRP

E-PRICE-Double-sided AS market

Request for reserve capacity

- BRP is willing to pay for absorbing or injecting energy
- give an estimate of the possible deviations from the scheduled Eprogram, so that the market is prepared and can react
- reduces risk of imbalance

pdf of p(k) due to intermittent generation $\frac{p_i \max a_i^+(k)}{A_2} \xrightarrow{p_i} \max a_i^-(k)}{r_+} \xrightarrow{r_-} A_1$ $0 p_i(k) \\ R^+ R^-$

P. Patrinos et al.

Bidding algorithms for AS markets

- Scenario based optimization problem is solved where a loss function is minimized.
- Done for a discrete set of λ^{AS} and then the curve is interpolated.
- Scenarios define *prosumption* = contribution of uncertain wind and load.

Profit
$$i^{\text{th}}$$
 scenario = $\lambda^{AS} x^{AS} - f_c(u_i) - \lambda^{imb} \epsilon_i$

- Decision variables:
 - x^{AS} energy bid on AS market
 - ui power set-point
 - ε_i imbalance
- Subject to:
 - production boundaries
 - internal balancing
 - non decreasing conditions

- Inputs:
 - λ^{AS} AS price
 - λ^{imb} imbalance price
 - $f_c(.)$ generation costs

Open loop simulation results

- Comparison with perfect information cost and marginal cost bidding strategy.

Model	mean profit (€)	mean imb (MWh)
Perfect info	59259	0
Marginal cost	30598	-300
BRP AS 95%	32639	-181

P. Patrinos et al.

Conclusions

- new hierarchical stochastic model predictive control algorithm for real-time management of BRPs
 - provides a reliable and robust solution for **integrating renewables**
 - reduces generation and imbalance costs
 - responds promptly to signals sent by TSO
 - handles ramp-rate limits safely eliminating discrepancies at PTU crossings
- new scenario-based stochastic optimization algorithms for DA and AS bidding
 - optimal trade-off between expected profit and risk [CV@R]
 - integration of intermittent energy sources
 - decoupling between EX and AS markets

References

E-PRICE deliverables (<u>http://www.e-price-project.eu</u>)

D3.1 - Stochastic model predictive control approaches to energy management

- D3.2 Performance assessment of stochastic control methodologies
- D3.3 Multi-objective model predictive control

Publications

Patrinos, P., Bernardini, P., Maffei, A., Jokic, A., Bemporad A., **Two-time-scale MPC for economically optimal real-time operation of balance responsible parties**, in *IFAC 8th Power Plant and Power Systems Control Symposium*, Toulouse, France, 2012.

Patrinos, P., Trimboli, S., Bemporad A., **Stochastic MPC for real-time market-based optimal power dispatch**, in Proc. 50th IEEE Conf. on Decision and Control and European Control Conf., Orlando, FL, 2011.

L. Puglia, D. Bernardini and A. Bemporad, <u>A multi-stage stochastic optimization</u> <u>approach to optimal bidding on energy markets</u>, in Proc. 50th IEEE Conf. on Decision and Control and European Control Conference, Orlando, FL, 2011, pp. 1509-1514.