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Motivation

Present arrangements in power systems:
¢ have many inefficiencies
e are not suited to cope with future developments
e didn’t have sufficient incentives for ’proper’” behavior

Neither reliable, nor economic, nor self-regulating®
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economic power system that can cope
with future challenges
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* Self-regulating: if all parties try to achieve their own goals, the overall objectives are achieved and
global constraints are satisfied (incentive-based control)
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e Stochastic MPC algorithms for solving complex decision problems
arising in management of Balance Responsible Partners (BRP).

— Real-time power dispatch
— Bidding on day-ahead (DA) and Ancillary Services (AS) markets
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Real-time control of BRPs

e Balance Responsible Parties (BRPs) participate to the various energy
markets and trade electricity to satisfy their loads and make profits

e Optimal control of BRPs is a challenging task, as in real-time a BRP must:

v fulfill its E-Program, plus perturbations induced by uncertainties
— intermittent generation from renewable sources

— time-varying internal loads

v’ react to signals arriving from the TSO

— frequency deviations, Ancillary Services

bids activated by the TSO Imbalance
s
v¥" minimize generation and imbalance costs B

hl-l—'
¥ & & & ¥ W

— time-varying, stochastic imbalance prices

v" consider plants dynamics and respect constraints ittt

— bounds on power output, ramp-rate constraints
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Real-time control of BRPs

e Current practice:
v Day-Ahead: generators schedule and power setpoints computation

- Unit commitment: power setpoints are based on rough uncertainty estimates
¥ Inreal-time: track setpoints

- response to momentary input values

* (Cons:
— difficulty in handling ramp-rate constraints
— difficulty in handling PTU coupling (no integral action)
— rough economic optimization
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Stochastic Model Predictive Control

model-based optimizer process
stochasticity

reference

r(t) ’ - u(t)

| measurements I

output

y(t)

Use a stochastic dynamical model of the process to predict its
possible future evolutions and choose the “best” control action

set-point

e MPC strategy:

— At every time step k, solve a stochastic optimal
control problem over a time horizon of N steps

— Apply the first control move u(k| k) u(k|k)

— At time k+1, get new measurements and O
repeat the optimization

predicted output

y(k+7|k)

k k+1
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HSMPC for BRP-RT Two-time-scale Hierarchical Stochastic MPC controller
Upper-level SMPC [~1 min-1 PTU]

generation costs i

E-program and generators schedule

imbalance costs (uncertainty in imbalance prices) v’ Delta power
generator constraints
wind, load, SC uncertainty

AN NI N NN

time-scale
in-1 PTU

.:/

v frequency
deviation

]II ) v Load
Energy and power set-points v wind
w v’ power
generated
Lower-level MPC

Scenario Generation Scenario Tree Construction

v’ tracking error ‘/ Load
v Detailed generator dynamics ‘/ oad
v’ generator (soft) constraints win

v’ power
L power set-points
Physical system

— increased profits due to real-time calculation of economically optimal setpoints

r time-scale
4 secs

— improved E-Program tracking due to real-time integral action
— effective handling of ramp-rate constraints, allowing smooth PTU transitions
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BRP model on the energy time scale

e Generation costs for each of the np generators are modeled as convex
quadratic functions of the power p

) =a;(p)* +bip' +ci, a; =0, i€{l,...,n,}

e Energy Imbalance is defined as the difference between the energy
produced by the BRP and the energy requested by the TSO at PTU n

Ae(n) = e(n) — e (n)

e If A(e(n)) > 0 (surplus), TSO buys this energy from BRP at price Afy
o If A(e(n)) <0 (shortfall), BRP buys this energy from TSO at price Ay
e Theimbalance prices can be negative, but usually Ay, > )\iFM

e Hence, BRP imbalance costs are computed as

b1 (Ae) = <>‘I_M - )‘EI_M)‘AG‘ — %()‘I_M + )‘;FM)AG

1
2
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Modeling Uncertainty

gOn-line, using historical data, build an optimal scenario tree with prespecified
complexity.
gData-driven approach. Learning from the past using historical data.

Yistorical load, eind, imbalance S M lp C

Opz‘/ma/ Scenario Tree with
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riultistage aptionzation!!. Critical feature for real-time applications

We can control the trade-off between complexity and performance!
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BRP model on the power-time scale

e Detailed model of generator dynamics is considered in the lower level

e This model consists of two parts:

— fast model for primary reserve action, (low and a high pass filter in series):

p%ast(s) — TI;I;—T—l Tﬁs+1p;rim(8)

— slow model for the secondary reserve activation,

7 e_’l—’czielayS 7 7
Patow(S) = TH(U (s) +pprim(8))
— the generator power output is given by their sum, p*(s) = Pl (8) + Pliow (5)

e This can be expressed as a discrete-time linear system with 4 states and 1 input
for each generatori, i€ {1,...,n,}

' (t+1) = A'z"(t) + Bu'(t) + E'5f(t)
y'(t) = C'a'(t)

e The overall BRP model is given by aggregating all np generator models
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Simulation results

e (Consider a BRP with 10 controllable plants and 1 wind farm

Plant ID Fuel type

Max efficiency

Min power

Max power

Max ramp rate

#1 Gas 38% 25 MW 53 MW 3% /min
#2 Gas 42% 25 MW 64 MW 3%/min
#3 Gas 47% 133 MW 332 MW 3%/min
#4 Gas 47% 133 MW 332 MW 3%/min
#5 Gas 48% 140 MW 350 MW 3% /min
#6 Coal 39% 240 MW 602 MW 1.5%/min
#7 Gas 54% 670 MW 1675 MW 3%/min
#8 Gas 59% 280 MW 440 MW 5% /min
#9 Gas 59% 280 MW 440 MW 5% /min
#10 Coal/biomass 39% 400 MW 800 MW 1.5%/min

e Comparison of HSMPC against

— SetPoint Tracking (SPT) [current practice]: static computation of power
setpoints for each plant of the BRP, done on the day-ahead to track the E-

Program

— DMPC: Deterministic MPC formulation where no stochastic models of the
uncertainty are exploited

e Simulation interval: 16 PTUs (4 hours)
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Simulation results

e Historical data have been used to carry out simulations (from TenneT and KEMA)
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Internal loads
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Simulation results

e HSMPC outperforms SPT in terms of both constraints fulfillment and total cost

Controller Generation (€) | Imbalance (€) | Total cost (€) | Savings (€/hour)
SPT 549,257 -3,285 545,973

DMPC 578,674 -49,057 529,617 4,089
SHMPC 591,517 -73,139 518,378 6,899

power profiles with SPT
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V' exploits imbalance prices to make profits
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Optimal bidding on energy markets

Determine price-volume pairs to bid on the DA and AS market

DA bidding curves
(buy)

DA bidding curves
historical market data BRP sell
> — >| Tso
plant status and tech DA EX
constraints
E-Program |
l plants ON/OFF status
per PTU AS bidding curves
ile »| BRPAS } > TSO
plants produced

power per PTU

—

accepted bids

hourly load forecasts
wind forecasts

v' decoupled bidding on Day-Ahead and Ancillary Services Markets, BUT

v' BRP DA EX takes into account AS bids as stochastic disturbances

T R

v BRP DA AS takes place after DA price is known. Load and wind are treated as

stochastic disturbances

R — P
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Bidding algorithm on the DA market

Plants specs

Expected wind
and load gl BRPDAEX |
N / )7

historical data

| bfd Iaade}‘s |
Given: (MWh / eur)
1. a discrete set of spot (EX) prices

2. expected load and wind profiles for each hour of the following day

3. generators specifications (min and max power, efficiency, etc.)

4. scenarios for AS upward/downward prices (stochastic disturbance)
computes the optimal allocation of energy on the EX market for each hour
and for each EX price, such that

o profits (income - generation costs) are maximized and
e imbalance risks are minimized,

providing 24 bidding curves, one for each hour of the following day
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Bidding algorithm for DA market

TenneT NL delta control energy price distribution 2010Q1
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Control objective: minimize the Conditional Value at

Risk (CV@R), a risk measure of the profit that
quantifies the average loss above a given threshold
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o E

* Constraints: min and max power setpoint of the generators, internal energy balance,
non-decrease of the bid ladder are imposed as affine equality constraints

* Problem formulation: the two-stage optimization problem is formulated as a

Quadratic Program, that can be solved efficiently
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Ancillary Services market

Large BRPs are obliged to commit all their residual capacity on the AS
market by submitting AS bids (price-volume pairs)

BRPs supply reserve capacity power to the system (Current system)

. S—I_ BRP is willing to be paid for injecting energy (upward)
e S 7:BRPis willing to be paid for absorbing energy (downward)

AS price A\*° can be positive (upward) or negative (downward)

energy cash flow
direction direction

A5 >0l 9T BRP — TSOBRP + TSO|
AM 0 ST IBRP « TSOBRP « TSO|

Price Case
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Bidding algorithm for AS markets

C ¢ situati Price 1 .
e The BRP submits supply curves. . \ 4
- Positive price for upward RRP : S
- Negative price for downward RRP RT : Upeoard
Doeoneoard. R~ Volume
S— . [MWHh]

E-PRICE-Double-sided AS market
Request for reserve capacity | | |
e BRPis willing to pay for absorbing {77 \O,’,p/”(@ dute Lo interrutlent generation

or injecting energy
e give an estimate of the possible

deviations from the scheduled E-

program, so that the market is

prepared and can react

e reduces risk of imbalance e

P. Patrinos et al. HYCON2 Workshop on Energy 18/22



Bidding algorithms for AS markets

e Scenario based optimization problem is solved where a loss function is minimized.

e Done for a discrete set of A*° and then the curve is interpolated.
e Scenarios define prosumption = contribution of uncertain wind and load.

Profit i*" scenario = )\AS:BAS — fc(uz) — )\imbei

e Decision variables: e Inputs:
x> energy bid on AS market - A AS price
- u; power set-point - Amb imbalance price

- & imbalance fc(.) generation costs

e Subject to:
- production boundaries
- internal balancing
- non decreasing conditions
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Simulation results

Open loop simulation results
- Comparison with perfect information cost and marginal cost bidding strategy.

Model mean profit (€) mean imb (MWh)
Perfect info 59259 0

Marginal cost 30598 -300

BRP AS 95% 32639 -181

x 10*

T
profit
profit marginal costs

Profit

PTU
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Conclusions

* new hierarchical stochastic model predictive control algorithm for
real-time management of BRPs

— provides a reliable and robust solution for integrating renewables
— reduces generation and imbalance costs
— responds promptly to signals sent by TSO

- handles ramp-rate limits safely eliminating discrepancies at PTU
crossings

* new scenario-based stochastic optimization algorithms for DA and
AS bidding
- optimal trade-off between expected profit and risk [CV@R]
- integration of intermittent energy sources
— decoupling between EX and AS markets
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